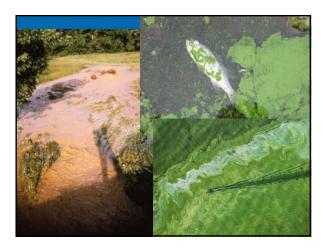


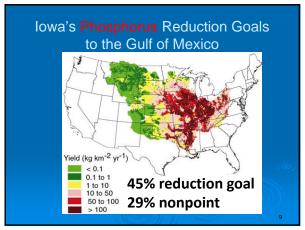
Phosphorus deficiency in corn

What is the difference between Nitrogen or Phosphorus?

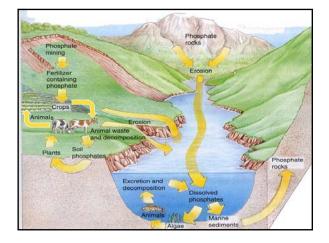
Nitrogen moves primarily as nitrate with Phosphorus moves primarily with eroded soil

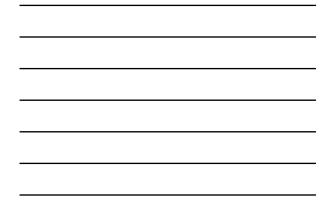
Phosphorus Concerns




- Excess P moves off of agricultural fields with
 soil erosion
 - water runoff
 - subsurface flow
- produces excess algae growth in streams and lakes

>Prompted the development of a P risk assessment tool – Iowa Phosphorus Index


Resource Concerns


- > SOIL EROSION:
 - > Sheet, Rill & Wind
 - Concentrated Flow-Gully
- SOIL QUALITY: ???
- > WATER QUALITY DEGRADATION
 - > Excess nutrients in surface & ground water
 - Excessive sediment in surface waters (indirectly)

Why do farmers add phosphorus?

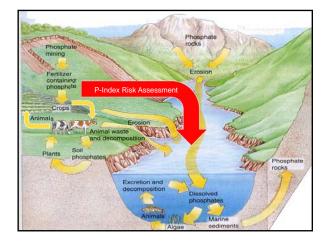
To grow a bigger crop

Agronomic P Application Rates Start with a Soil Test

- > Measures soil nutrient levels.
- Identifies fields that need or do <u>not</u> need additional nutrients.
- > Tracks fertility and production trends over time.

	Soil T	est Categories
VH	Very High	<1%
Н	High	5%
0	Optimum	25%
L	Low	65%
VL	Very Low	80% of time expect to get a yield response

Soil Test Categories				
VH	Very High	< 1%	31+	
н	High	5%	For corn/soybeans Optimum is:	
0	Optimum		Bray-1, Mehlich-3: 16 - 20 ppm Olsen: 11 - 14 ppm	
L	Low	65%	Mehlich-3 ICP: 26 - 35	
VL	Very Low	80% of time expect to get a yield response		


Contrast P Recommendations vs Phosphorus Index

 P Recommendations are for production

 P-Index is for water quality

What Impacts the Delivery of Phosphorus to Surface Water?

- Field Characteristics?
- Management?
- Conservation Practices?

Erosion Component

- □ Gross Erosion
 - Sheet & Rill (RUSLE2)
 - Ephemeral Gully
 - Gully
- □ Sediment Trap
 - Terrace
 - Sediment control basin
- Sediment Delivery
 - Landform
 - Distance to stream

Erosion Component - cont'd

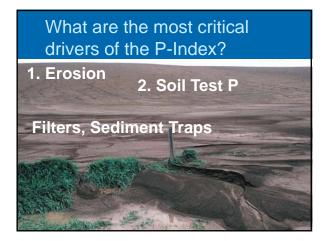
- Filter Factor
 Filter strip
- □ Enrichment Factor
- □ Soil Test Phosphorus

Runoff Component

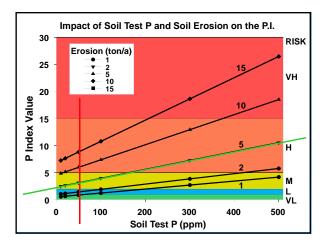
- Runoff Curve Number Factor
 - By Landform
 - Cover factor
 - Soil
- Precipitation Factor
 - By County
- Soil Test Phosphorus
- Phosphorus Rate and Application Method Factor

Subsurface Drainage Component

- □ Flow Factor
 - Tile
 - Water flow through soil profile
 - Cropping system
- Soil Test Phosphorus
- Precipitation

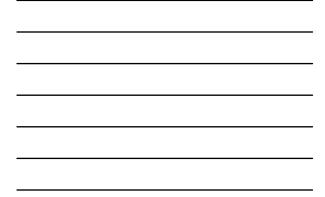

Phosphorus Index Categories

P.I.	Category	Risk to Water Quality
> 15	νн	Very High Risk
5 – 15	н	High Risk
2 – 5	м	Medium Risk
1 – 2	L	Low Risk
0-1	VL	Very Low Risk


Planning Implications of Risk Categories

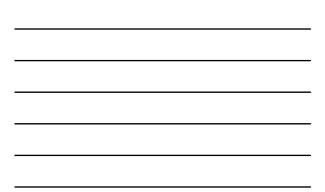
> High or Very High risk

- implement practices to reduce that risk to Medium or below. Do not apply P until the risk is reduced.
- > Medium risk
 - avoid accumulating P to level which raises the risk
- > Low, Very Low, and Medium risk
 - Can apply manure, municipal and industrial biosolids, or organic by-products based on the nitrogen application rates



•When to use the P-Index?

- P application rate exceeds ISU recommendations, or
- Manure, municipal and industrial biosolids, and/or organic by-products are applied, or
- > Soil loss exceeds the tolerable level, or
- Average soil test phosphorus for the field is in the very high range
- (Source: 590 Nutrient Management Standard (Oct. 2013))



Where to Get More Information

Data Collection Worksheet for RUSLE2 and Iowa Phosphorus Index (ISU PM 2021) Iowa Technical Note No. 25: Iowa Phosphorus Index

•Phosphorus Index Source Factors

- □ Soil test P
- Rate, method and timing of P applications
- Erosion

Phosphorus Index Independent Factors

- > Sediment delivery
- > How close the field is to water
- > Soil conservation practices
- > Precipitation
- > Runoff potential
- > Tile flow/subsurface drainage